If it's not what You are looking for type in the equation solver your own equation and let us solve it.
200=-16t^2-20t+400
We move all terms to the left:
200-(-16t^2-20t+400)=0
We get rid of parentheses
16t^2+20t-400+200=0
We add all the numbers together, and all the variables
16t^2+20t-200=0
a = 16; b = 20; c = -200;
Δ = b2-4ac
Δ = 202-4·16·(-200)
Δ = 13200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13200}=\sqrt{400*33}=\sqrt{400}*\sqrt{33}=20\sqrt{33}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20\sqrt{33}}{2*16}=\frac{-20-20\sqrt{33}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20\sqrt{33}}{2*16}=\frac{-20+20\sqrt{33}}{32} $
| 4-a=9.1 | | -0.9=-0.4m | | 2x+5+9(7x+8)=61+x | | -2x^2+2.8x-2=0 | | 218=x+50 | | (3x+12)=54 | | q+13=833 | | (x=4)(x+4) | | 7x−8=9x+7 | | 2(x+-1)+5x=40 | | 198=6x+x+65 | | q+13=884 | | 0.8x−5=0.45x+2 | | 124+71+4x-5+90=360 | | 28b=336 | | -2+x-5=-6 | | 6(x-8)=4x-42 | | 8−5x=9+x | | 8aa=5 | | |10x+9|=79 | | 6x+33=9x-18 | | 5s-(7/6)s=0 | | 198=6x+65 | | 5s(-7/6)s=0 | | 5s-7/6s=0 | | 10=b/8 | | 5s-7s/6=0 | | 4x-15+2x+5+90=180 | | y=3(4)+30 | | 8x/2=6 | | 2(z/5)+4=-12 | | -14+(5x-5)=2x-(7x-1) |